Local features are not lonely - Laplacian sparse coding for image classification

نویسندگان

  • Shenghua Gao
  • Ivor W. Tsang
  • Liang-Tien Chia
  • Peilin Zhao
چکیده

Sparse coding which encodes the original signal in a sparse signal space, has shown its state-of-the-art performance in the visual codebook generation and feature quantization process of BoW based image representation. However, in the feature quantization process of sparse coding, some similar local features may be quantized into different visual words of the codebook due to the sensitiveness of quantization. In this paper, to alleviate the impact of this problem, we propose a Laplacian sparse coding method, which will exploit the dependence among the local features. Specifically, we propose to use histogram intersection based kNN method to construct a Laplacian matrix, which can well characterize the similarity of local features. In addition, we incorporate this Laplacian matrix into the objective function of sparse coding to preserve the consistence in sparse representation of similar local features. Comprehensive experimental results show that our method achieves or outperforms existing state-of-the-art results, and exhibits excellent performance on Scene 15 data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplacian affine sparse coding with tilt and orientation consistency for image classification

Recently, sparse coding has become popular for image classification. However, images are often captured under different conditions such as varied poses, scales and different camera parameters. This means local features may not be discriminative enough to cope with these variations. To solve this problem, affine transformation along with sparse coding is proposed. Although proven effective, the ...

متن کامل

Image classification using spatial pyramid robust sparse coding

Recently, the sparse coding based codebook learning and local feature encoding have been widely used for image classification. The sparse coding model actually assumes the reconstruction error follows Gaussian or Laplacian distribution, which may not be accurate enough. Besides, the ignorance of spatial information during local feature encoding process also hinders the final image classificatio...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Low-rank decomposition and Laplacian group sparse coding for image classification

This paper presents a novel image classification framework (referred to as LR-LGSC) by leveraging the low-rank matrix decomposition and Laplacian group sparse coding. First, motivated by the observation that local features (such as SIFT) extracted from neighboring patches in an image usually contain correlated (or common) items and specific (or noisy) items, we construct a structured dictionary...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010